Optimizing Accuracy and Size of Decision Trees

نویسنده

  • Tea Tušar
چکیده

This paper presents the problem of finding parameter settings of algorithms for building decision trees that yield optimal trees—accurate and small. The problem is tackled using DEMO algorithm, an evolutionary algorithm for multiobjective optimization that uses differential evolution to explore the decision space. The results of the experiments on six datasets show that DEMO is capable of efficiently solving this problem, offering the users a wide choice of near-optimal decision trees with different accuracies and sizes in a reasonable time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting The Type of Malaria Using Classification and Regression Decision Trees

Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

An Approach towards Optimizing Random Forest using Dynamic Programming Algorithm

Random Forest (RF) is an ensemble supervised machine learning technique. Based on bagging and random feature selection, number of decision trees (base classifiers) is generated and majority voting is taken among them. The size of RF is subjective and varies from one dataset to another. Furthermore due to the randomization induced during creation, and its huge size, RF has at best been described...

متن کامل

تنظیم و کاربرد الگوریتم جنگل تصادفی در ارزیابی ژنومی

One of the most important issues in genomic selection is using a decent method for estimating marker effects and genomic evaluation. Recently, machine learning algorithms which are members of non-parametric and non-linear methods have been extended to genomic evaluation. One of these methods is Random Forest (RF) on which this research was focused. Important parameters in RF algorithm are the n...

متن کامل

Improving Growth and Performance of Young Almond Trees in Nursery by Optimizing Mineral Nutrition

Short growing season restricts production of standard-sized fruit trees in nurseries at cold regions. Enhancing plant growth by optimizing program of mineral nutrition may solve the problem. This study evaluated efficiency of fertilizers [urea, sulfur coated urea (SCU), or foliar applications of a NPK compound fertilizer] for optimizing the growth of seedling rootstocks and grafted young almond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007